

FRIEND SHIP

Forthcoming Research and Industry for European and National Development of SHIP Material selection and prototype design of a double-fluid circulation PCM storage for SHIP applications

SolarPACES 2021 Pierre GARCIA, Grégory LARGILLER CEA Grenoble, France Corresponding author: Pierre. Garcia@cea.fr

Context

FRIEND SHIP Forthcoming Research and Industry for European and National Development of SHIP

- ✓ Project objective
 - ✓ To demonstrate that SHIP is reliable, flexible, robust and cost-competitive
 - $\checkmark~$ At temperatures between 200°C and 300°C
 - $\checkmark\,$ Industrial sectors such as textile, plastics, wood, metallurgy, and chemistry
- ✓ Thermal storage need
 - \checkmark To ease the integration of SHIP in an existing process
 - \checkmark A unique component with the following functions:
 - $\checkmark\,$ heat storage from the solar field
 - $\checkmark~$ excess heat storage from the industrial process
 - $\checkmark~$ heat release to the industrial process
 - ✓ direct heat transfer between solar and process loops using different HTFs
- ✓ Thermal storage solution:

Combined Heat Storage (CHS)

PCM review, selection and testing

Selected material • Stability and performances OK Thermo physical characteristics • Highly Hygroscopic • High density	Туре	Name	ΔH _{sol/liq} (J/g)	T° _f (°C)	Comments
	Eutectic Mixture	Ca(NO ₃) ₂ —KNO ₃	70	152	Affordable, highly hygroscopic Tested
	Eutectic Mixture	NaNO ₃ -Ca(NO ₃) ₂ —KNO ₃	Very low	180	Affordable, highly hygroscopic Tested
	Sugar and sugar alcohol	d-Mannitol	294-341	165-168	High supercooling and stability issues Tested
	Eutectic mixture	LiNO ₃ -NaNO ₂	233	156	High Cost, highly hygroscopic
	Eutectic mixture	LiNO ₃ -KCl	272	160	High Cost, highly hygroscopic, corrosion issues
	Eutectic mixture	HCOONa-HCOOK	175	176	Scarce existing data, corrosion issues
	Inorganic salt	Potassium thiocyanate	112-114	157-177	Low cycling stability, corrosion issues, toxicity
	Fatty acid	Adipic acid	239-252	152	Flammable at temperatures >170°C, corrosion issues
	Amide	Benzanilide	129-139	161	Produce CMR and flammable gas upon decomposition
	Phenolic acid	Salicylic acid	199	157-159	Low cycling stability, highly flammable
	Aromatic hydrocarbon	Hydroquinone	179-235	160-173	Low cycling stability, highly flammable, CMR?
	Sugar and sugar alcohol	Dulcitol	246-257	167-185	Low cycling stability, supercooling

FRIEND SHIP Forthcoming Research and Industry for European and National Development of SHIP

Material characterization - binary mixture

Proportions mixed and heated 4h @ 250°C, then characterized

Material characterization - effect of humidity

FRIEND SHIP Forthcoming Research and Industry for European and National Development of SHIP

Ca(NO₃)₂ not available as anhydrous salt Only Ca(NO₃)₂-4H₂O in standard conditions

Ca(NO₃)₂-4H₂O:

- Start dehydration below 40°C
- Fully dehydrated above 160°C
- Total mass loss: 30%wt

Effect of humidity on binary mixture and impact on the storage unit?

Influence of humidity on the binary material

• 50g bulk anhydrous binary mixture left 3 weeks at 17°C/47%Hr in an open container

Water molecules modify the binary nitrate and make it unusable for heat storage Is it possible to regenerate it?

FRIEND

Forthcoming Research and Industry for European and National Development of SHIP

Influence of humidity on the binary material

FRIEND SHIP Forthcoming Research and Industry for European and National Development of SHIP

Melting/solidification temperature increases as humidity drops 中 binary nitrate « regenerates »

PCM storage design: state of the art

✓ PCM storage prototypes for CSP application

✓ Shell and tube design

Source: Garcia et al., 2020 SolarPACES Conference

✓ A unique HTF

Tubes Aluminum fins Heat transfer enhancement by aluminum inserts around the vertical finned tubes

PCM tubes & inserts

FRIEND

Forthcoming Research and Industry for European and National Development of SHIP

Prototype integration & Design parameters

✓ Prototype tested on two facilities

HTF type	CHS Lab tests	SHIP200 prototype
From FRIENDSHIP heat producers	Pressurized water	Thermal oil
From / To existing process heat consumers	Steam	Pressurized water

✓ Design conditions

	Charge	Discharge
Heat Transfer Fluid	Wacker Helisol XLP	pressurized water
Charging/discharging time	4 h	2 h
Inlet temperature	200°C	140°C
Pressure level – Nominal	5 bara	20 bara
Mean HTF temperature	178.2°C	148.2°C
HTF mass flow	156 g/s	354 g/s

FRIEND

For the coming Research and Industry for European and National Development of SHIP

Design selection methodology

Forthcoming Research and Industry for European and National Development of SHIP

FRIEND

Possible two-fluid designs

FRIEND SHIP Forthcoming Research and Industry for European and National Development of SHIP

- ✓ A wide range of possible designs
 - Aluminium heat exchanger tubes: would need enhanced thermomechanical resistance and corrosion tests
 - ✓ Extrusion limits for aluminium inserts
 - ✓ Standard finned tubes only

Sizing results

Design	Option A	Option B	Option C
D _{in} /D _{out} charge tube (mm)	13.65 / 19.05	13.65 / 19.05	10.48 / 15.88
D _{in} /D _{out} discharge tube (mm)	32.7 / 38.1	32.7 / 38.1	10.48 / 15.88
D _{out} fins (mm)	63.5	63.5	34.88
Tube spacing (mm)	96	70	88
Number of double fluid tube	29	61	37
Tube length (m)	3.64	3.52	3.87
[CFD] ΔT _{max} end of discharge (K)	4.0	2.6	9.3
[1D model] Charged energy*	85% 🛆	95% 🛕	82% 🛕
[1D model] Discharged energy*	98% 🔾	107% 🔾	87% 🔘

Fig. 1 Regimes of free, forced, and mixed convection for flow through vertical tubes

$$\left(10^{-2} < \Pr\frac{d}{L} < 1\right)$$

Source: Metais & Eckert Journal of Heat Transfer 86 295-6 1964

Conclusions & Outlook

 \checkmark CHS prototype design

- \checkmark A wide range of geometries considered
- ✓ CFD models to evaluate heat transfer in PCM+fins(+inserts) volume
- ✓ 1D modelling to assess thermal performances in rated charge/discharge cases
- ✓ Ongoing engineering study with promising designs for the 3 options

\checkmark PCM selection and characterization

- \checkmark Not a lot of choice in this temperature range! Very few data in literature
- \checkmark Low cost and non corrosive PCM found
- ✓ Ongoing work on humidity management and filling procedures

 \checkmark Perspectives

- ✓ CHS storage adapted to numerous storage applications: district heating, Carnot batteries, waste heat recovery,...
- \checkmark Concentric designs show high heat transfer rates and can be used as heat exchangers

For the coming Research and Industry for European and National Development of SHIF

FRIEN

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884213, project FRIENDSHIP.

14